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ABSTRACT 
An exact solution to the flow past an impulsively started infinite vertical plate is presented when the plate 
temperature is oscillating about a constant mean. Velocity and temperature profiles are shown Graphically.  It is 
observed that the velocity increases with increasing the Grashof number but decreases with increasing the 
frequency. Also the skin-friction increases with increasing the frequency  or the Prandtl number Pr. 
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INTRODUCTION 
The first exact solution of the Navier-Stokes equation was presented by Stokes (1851) which was concerned with the 
flow of a viscous incompressible fluid past an impulsively started infinite horizontal plate in a mass of stationary fluid.  
This is referred in all the textbooks on viscous flow theory.  For a semi-infinite horizontal plate started impulsively in a 
stationary fluid, analytic solution was presented by Stewartson (1951), whereas Hall (1969) solved this problem for 
semi-infinite horizontal plate by finite-difference method. 
 
If now, an impulsive motion is given to a vertical plate, held stationary in a viscous incompressible fluid, how the flow 
is affected by free-convection currents in the fluid near the moving plate?  This was first presented by Soundalgekar 
(1977) who gave an exact solution to this problem governed by coupled linear equations.  The effect of heating or 
cooling of the plate by free convection current was also studied.  Here the plate temperature was assumed to be 
isothermal.  However, this is a very restricted assumption and in nature, the temperature of the plate cannot remain 
constant due to many physical reasons.  If now, the plate temperature starts oscillating about the mean temperature, 
how the flow is affected by this new physical phenomenon?  This is not studied in the literature even though this is not 
important aspect of this problem, which is useful in the industry.  Hence, it is now proposed to study the effect of 
oscillating plate temperature on the flow past an impulsively started infinite vertical plate held stationary in an infinite 
mass of viscous fluid.  
 
Mathematical Analysis 
Consider an infinite vertical plate held stationary in a mass of viscous incompressible fluid, both being maintained at 

the same temperature 0'at     tT .  At time t' > 0, the plate is given an impulsive motion with a velocity uo in the 

vertically upward direction, the plate temperature raised to   wT  which then starts oscillating with a frequency.  The 

y-axis is taken normal to the plate.  Then under the usual Boussinesq's approximation, the flow can be shown to be 
governed by the following set of equations: 
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with following initial and boundary conditions: 
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Here all the physical quantities are defined in the Nomenclature.  As the plate is infinite in extent, the flow variables are 
functions of y' and t' only. 
 On introducing the following non-dimensional quantities 
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in equations (1) - (3), we have 
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With following initial and boundary conditions: 
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The solutions to these coupled partial differential equations are derived by the usual Laplace-transform technique and 
these are as follows: 
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In order to get physical insight into the problem, we have computed numerical values of  and u ,  However, it is seen 
from the expressions for u,  that the argument of 'erfc'-function is complex and hence we have used formula (10) to 
separate the real and imaginary parts of 'erfc' function with complex argument.  Pr-values are so chosen that they 
represent common fluids air (0.71), water (7.0).  On Fig. 1, the effect of the Grashof number and the Prandtl number is 
shown on the velocity-field and we observe that an increase in Gr leads to a raise in the velocity whereas the velocity 
decreases owing to increasing the Prandtl number.  It is seen from the expression for the velocity that the frequency of 
oscillating plate temperature also affects the velocity and we observe from Fig.2 that the velocity for air and water 
decrease with increasing the frequency  but decreases with increasing time t, for both air and water. The effect of  t 
on the velocity field is shown on Fig. 3. We observe from this Figure 3 that the velocity increases with increasing t.  
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On Fig. 4, the temperature profiles are shown for different values of t and Pr and we observe from this figure that the 
temperature of both air and water decrease as t increases. 
 
Knowing the velocity field, we can now study the skin-friction which is given by 
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Then from (9) and (11), we have 
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The numerical values of   are computed and are listed in Table I. 

Table I - Values of  .2 t  
t Pr Gr t\ 5 10 15 

0.2 0.71 2 /2 
/3 
/4 
/6 

0.3274 
0.2904 
0.3363 
0.4169 

 
0.4644 

 
0.5224 

0.2 0.71 4 
6 

/3 
/3 

-0.1994 
-0.8634 

  

0.4 0.71 2 /3 -0.0254   
0.2 7.0 2 /2 

/3 
/4 
/6 

0.7235 
0.7048 
0.7231 
0.7688 

 
0.7928 

 
0.8221 

0.2 7.0 4 
6 

/3 
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 0.4572 
0.1216 

 

0.4 7.0 2 /3  0.5452  
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We observe from this table that at large values of Gr or time t , the values of  for air are negative and hence there may 
occur separation at the moving plate at large values of Gr and small values of the frequency .  Again, when t varied 
from 30o to 60o, the skin-friction decreases.  Same effect is observed in water also.  But, an increase in Pr, the Prandtl 
number, or the frequency, the skin-friction is also observed to increase. 
 
CONCLUSION 
Velocity increases with increasing the Grashof number Gr or time t or t, but decreases owing to an increase in the 
frequency  or the Prandtl number. Temperature is found to fall with increasing t or Pr. At large values of Gr and 
small values of the frequency, there may occur separation of air-flow.  The skin-friction increases with increasing  
or Pr. 
 
Nomenclature 
Cp  specific heat at constant temperature 
g   acceleration due to Gravity 
Gr  Grashof number 
k  thermal conductivity 
Pr  Prandtl number 
T  temperature of fluid near the plate 

T   Temperature of fluid far away from the plate 

T    Plate temperature 

t'  time 
uo  impulsive velocity of the plate 
u'  velocity of fluid in the upward direction 
y'  coordinate normal to the plate 
  Kinematics viscosity 
 coefficient of volume expansion 
  Density 
'  Frequency 

  tY 2/  
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